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Abstract
Spin diffusion within the double-exchange model is studied in the limits
W � T � JHS (intermediate temperatures) and W � JHS � T (infinite
temperature), whereW is the electron bandwidth, T is the temperature, S is the
local spin, and JH is the Hund’s coupling. In both limits, T is still far above
the Curie temperature TC ∼ W . All dynamical properties are obtained from
the spin-current correlation function C(x), where x denotes time. While C(x)
is real (even) at infinite temperature, it contains both real (even) and imaginary
(odd) parts at intermediate temperatures. Upper and lower Tchebycheff bounds
are used to evaluate the real part of C(x) in each limit. From C(ω), we
construct the spin conductivity D(ω), which has Gaussian peaks at ω = 0 and
±2JHS, all with the same width ∼W . Whereas the central peak is produced
by the hopping of electrons between sites, the side peaks are produced by the
mutual precession of the local and itinerant spins at every site. At infinite
temperature, each of the side peaks has half the weight of the central peak. But
at intermediate temperatures, the side peaks are reduced by T/(JHS) � 1 as
the spin precession becomes energetically prohibitive. A rigorous f -sum rule
relates the integral overD(ω) to the average kinetic energy at any temperature.
In the zero-frequency limit, the spin-diffusion coefficientDs = (1/2)D(ω = 0)
yields the relaxation time τr(k) = 1/(Dsk2) for a magnetic disturbance with
wavevector k. Whereas Ds reaches a maximum at half-filling (an average of
one electron per site) for infinite temperature, it vanishes at half-filling for
intermediate temperatures because an electron cannot hop to a neighbouring
site without sacrificing enormous Hund’s energy. The predictions of this work
are compared with recent neutron-scattering measurements on the manganites.

1. Introduction

Spin diffusion is the process of magnetic relaxation in a paramagnetic system [1]. A magnetic
disturbance with wavevector k relaxes in time τr(k) = 1/(Dsk2), whereDs is the spin-diffusion
coefficient (SDC). Although well understood in local-moment systems [2], spin diffusion has
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only recently been examined in itinerant systems [3–5], where a magnetic disturbance relaxes
through electron hopping. This paper applies a newly developed technique [6, 7] to study the
process of spin diffusion within the double-exchange model.

The Hamiltonian of the double-exchange model [8] is usually written as

H = −t
∑
〈i,j〉
(c

†
Riα
cRj α + c†

Rj α
cRiα)− 2JH

∑
i

si · Si . (1)

Here, c†
Riα

is the creation operator for an electron with spin α = ↑ or ↓ (repeated spin indices

are summed), si = (1/2)c†
Riα


σαβcRiβ is the spin of an electron on site i, and Si is the local
spin at that site. So the total spin at site i is given by Stot,i = si +Si . Since JH > 0, the Hund’s
coupling aligns the electron and local spins and electrons prefer to hop between neighbours
Ri and Rj with parallel local spins.

Due to the close connection between electron conduction and magnetic order, the
double-exchange model qualitatively explains the metal–insulator transition observed in
manganites [9] like La1−yCayMnO3 at the Curie temperature TC when y ≈ 0.3. Above TC,
electron conduction is impeded by the random orientation of the local moments; below TC, the
conductivity is enhanced by the alignment of the local moments. A metal–insulator transition
can also be produced by applying a magnetic field above TC, where the dramatic reduction
in the resistivity is known as colossal magnetoresistance. Despite the success of the double-
exchange model in explaining many qualitative features of the metal–insulator transition in the
manganites, it cannot quantitatively explain the drop in resistance below TC [10]. Nor can it
explain many anomalous features [11, 12] of the spin dynamics below TC. Rather, the effects
of lattice and magnetic polarons are believed to be just as important [13] as the physics of
double exchange.

The central object of this study will be the spin-current correlation function (SCCF)C(x),
where x is taken to be time in order to avoid confusion with the hopping energy t . Two
limits will be examined: W � T � JHS (intermediate temperatures) and W � JHS � T

(infinite temperature), where W is the bandwidth of the electrons. In both limits, T is far
greater than the Curie temperature TC ∼ W [14] and short-range magnetic order is absent.
Whereas the conduction-band electrons are insensitive to the effect of the Hund’s coupling at
infinite temperature, the electrons are restricted to states with the maximal value of si · Si at
intermediate temperatures.

In each limit, calculations are performed on a Bethe lattice with bandwidth W = 4
√
zt

and coordination number z  1. Previous studies [14] of spin dynamics within the double-
exchange model have also been performed on a Bethe lattice, which like a three-dimensional
cubic lattice has well-defined band edges. The Bethe lattice also has the convenient property
that closed loops are avoided. After some initial manipulations, we shall assume that the local
spins are classical with S  1.

Starting with the SCCF, we evaluate the spin conductivity D(ω), which is used to
parametrize the neutron-scattering cross section for small k. In the limit ω → 0, D(ω)
determines the SDC Ds = D(ω = 0)/2. For infinite temperature, the SCCF is real and an
even function of time. But for intermediate temperatures, C(x) = C(1)(x) + iC(2)(x) contains
both real (even) and imaginary (odd) contributions.

At both infinite and intermediate temperatures, the real part of the SCCF will be evaluated
in three steps. First, the Taylor coefficients ofC(1)(x) are obtained using an exact algorithm on
the Bethe lattice. The Taylor coefficients (evaluated up to as high an order as possible) are then
used to yield upper and lower Tchebycheff bounds forC(1)(x). Together, the Taylor expansion
and the Tchebycheff bounds are employed to construct an analytic form forC(1)(x)which obeys
all formal limits. This technique was previously introduced in two short publications [6, 7]
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which emphasized that earlier approaches [3, 4] to spin diffusion in itinerant systems were
flawed by the use of an approximation [15] designed for local-moment systems.

The spin conductivity D(ω) is then simply obtained from C(1)(ω). Like C(1)(ω), D(ω)
has three Gaussian peaks: a central peak at ω = 0 and two side peaks at ±2JHS, all with
the same width proportional to W . Physically, the side peaks are produced by the mutual
precession of the electron and local spins at any site while the central peak is produced by the
hopping of electrons between sites. At infinite temperature, the weight of each side peak in
D(ω) is half as large as the weight of the central peak. But at intermediate temperatures, the
side peaks are suppressed by T/(JHS) � 1 and disappear as the energy required for the spin
precession becomes inaccessible. For both temperature regimes, a rigorous f -sum rule relates
the expectation value of the kinetic energyK (the first term in the Hamiltonian of equation (1))
to the integral over D(ω).

Finally, we evaluate the SDC Ds from the zero-frequency limit of D(ω). When JH/W

and T/W are infinite, Ds is proportional to W/z in both temperature ranges. At infinite
temperature, Ds vanishes at band-filling fractions of p = 0 (no electrons per site) or 1 (two
electrons per site) and reaches a maximum atp = 1/2 (half-filling or an average of one electron
per site). But for intermediate temperatures,Ds vanishes at half-filling and reaches maxima at
p = 1/4 and 3/4. The suppression of Ds near half-filling at intermediate temperatures has a
simple significance: assuming JHS/T = ∞, doubly occupied or empty sites are energetically
prohibited and there is exactly one electron on each site at half-filling. Hence, the electrons
are trapped at singly occupied sites and spin diffusion is prohibited.

The next section develops the basic formalism of spin diffusion. Then, section 3
summarizes the analytical and numerical technique employed to evaluate the real part of
the SCCF. Results for the spin conductivity and SDC are provided in section 4. Finally, we
compare those results with neutron-scattering measurements in section 5. Proof of the f -sum
rule, results for the Taylor coefficients, and expressions for the Fourier transform C(1)(ω) are
contained in three appendices.

2. Formalism of spin diffusion

This section outlines the basic formalism [16] for spin diffusion in a paramagnet. As is well
known, neutron-scattering studies measure the total spin correlation function

Gαβ(k, ω) =
∑
i

∫
dx eiωx−ik·RiGαβ(Ri , x) (2)

Gαβ(Ri − Rj , x) = 〈Sαtot,i (x)S
β

tot,j (0)〉. (3)

Due to the isotropy of the spin fluctuations above TC, Gαα(k, ω) are all equivalent and the
off-diagonal terms vanish. Hence, we shall take α = β = z and drop the spin indices. The
correlation function defined above is simply related to the response function

χ2(k, ω) = 1
2

∑
i

∫
dx eiωx−ik·(Ri−Rj )〈[Sztot,i (x), S

z
tot,j (0)]〉 (4)

through the fluctuation-dissipation theorem:

χ2(k, ω) = 1 − e−βω

2
G(k, ω) (5)

where h̄ = 1 and β = 1/T . Of course, all time dependence is governed by the Hamiltonian
H with A(x) = exp(iHx)A exp(−iHx).
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The usual hydrodynamic expression for the response function in the limit of small
momentum and low frequency [1] is

χ2(k, ω) = ωk2Ds

ω2 + (Dsk2)2
χ (6)

where χ is the static susceptibility. Consequently, the correlation function contains a quasi-
elastic peak with width $(k) = 2/τr(k) = 2Dsk2. We shall employ a somewhat more general
relation [16] which is valid for small k but arbitrary ω:

χ2(k, ω) = Im χ(k, z = ω + iε) (7)

χ(k, z) = ik2D̄(z)

z + ik2D̄(z)
χ (8)

D̄(z) =
∫ ∞

0
dx eizxD(x) =

∫
dω

2π i

D(ω)

ω − z Im z > 0 (9)

where ε > 0 is an infinitesimal. This parametrization of the response function is valid for
ka � 1 and kξ � 1, where ξ is the magnetic correlation length. So for a fixed k, it will fail
in the critical regime very close to TC, when ξ becomes large. For z in the upper half-plane,
equation (9) implies that

D̄(ω + iε) = −i P
∫

dω′

2π

D(ω′)
ω′ − ω +

1

2
D(ω) (10)

where P is the principal part of the integral. We shall refer to the imaginary part of D̄(ω + iε)
as −i P I .

It follows that the spin conductivity can be written

D(ω) = 2ω

χ
lim
k→0

1

k2
χ2(k, ω) = ω

χ
(1 − e−βω) lim

k→0

1

k2
G(k, ω). (11)

But the right-hand side is related to the SCCF through [16]

lim
k→0

1

k2
G(k, ω) = a2t2

ω2
C(ω) (12)

t2C(x) = lim
k→0

1

N
〈J zγ (k, x)J zγ (−k, 0)〉 (13)

where γ is fixed and J αγ is the spin current in the direction aγ (which lies along one of z/2
mutually orthogonal directions) with polarization α. Hence,D(ω) and C(ω) are connected by

D(ω) = a2t2

χ

1 − e−βω

ω
C(ω) (14)

and the SDC Ds = D(ω = 0)/2 is obtained by integrating C(x) over all time:

Ds = a2t2

2χT
C(ω = 0) = a2t2

2χT

∫
dx C(x). (15)

Another useful quantity is the ‘memory time’ τm, defined by

τm = 1

D(x = 0)

∫ ∞

0
dx D(x) = Ds

D(x = 0)
(16)

which yields the range of D(x) in time. Unlike the relaxation time τr(k), τm corresponds to a
microscopic collision time [16].
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To calculate the spin current, we apply the equation of continuity for the total spin
containing both local and itinerant contributions:

i
dSαtot,k

dt
= [Sαtot,k, H ] =

∑
δ

k · aδ J
α
δ (k) (17)

J αγ (k) = t

2i

∑
i

e−ik·Ri c
†
Ri ,β
σ αβκ(cRi+aγ ,κ − cRi−aγ ,κ ) (18)

which uses the spin-commutation relations between the quantum local spins Si to ensure that
the potential V conserves the total spin or that [Stot,i , V ] = 0. If only the itinerant spin were
used in the definition of the spin correlation function χ2(k, ω) [5], then the commutator [si , V ]
would contain the term 2iJHsi × Si corresponding to the precession of the itinerant and local
spins. This precession term is avoided when the spin correlation function is correctly defined in
terms of the total spin. Having included the local spin in the time derivative of Stot,k, we find that
it does not affect the spin current, which only involves Fermion operators1. At this point (but
not before), it is safe to take S to be large and to treat the local spins classically. Exploiting the
isotropy above TC once again, we define the dimensionless spin current I (x) = J zγ (k = 0)/t
so that the dimensionless SCCF is given by C(x) = (1/N)〈I (x)I (0)〉, independent of γ .

Since all Fourier components of the correlation function C(x) are positive [16], the real
and imaginary parts of C(x) = C(1)(x) + iC(2)(x) must be even and odd functions of x,
respectively. It follows from equation (15) that Ds is real and proportional to the integral of
C(1)(x). Furthermore, C(ω) = C(1)(ω) + C(2)(ω) > 0 also contains two contributions:

C(1)(ω) =
∫

dx cos(ωx)C(1)(x) (19)

C(2)(ω) = −
∫

dx sin(ωx)C(2)(x) (20)

where C(1)(ω) is an even and C(2)(ω) is an odd function of ω. The next section introduces a
technique for evaluating C(1)(x) and C(1)(ω). Both C(2)(x) and C(2)(ω)may then be obtained
from the symmetry relation C(−ω) = exp(−βω)C(ω), which implies that

C(2)(ω) = tanh(βω/2)C(1)(ω). (21)

Combining this expression with equation (14) yields the spin conductivity:

D(ω) = 2a2t2

χ

tanh(βω/2)

ω
C(1)(ω) (22)

which is always a positive and even function ofω, as required by the conditionωχ2(k, ω) � 0.
Completing this formal development, the f -sum rule derived in appendix A relates the

integral over D(ω) to the average kinetic energy and to the memory time for any itinerant
model where the potential conserves the total spin:

∫
dω

2π
D(ω) = − a2

2Nzχ
〈K〉 = Ds

τm
. (23)

Unlike the results obtained below for C(ω) andD(ω), this sum rule is completely general and
is not restricted to temperatures far above TC or to the Bethe lattice. Nor does it make any
assumptions about the sizes of S and z.

1 This corrects a sign mistake made for the spin current in earlier papers [6,7]. Since the SCCF involves the product
of two spin currents, this sign error had no deleterious effects.
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3. Tchebycheff bounds and the spin-current correlation function

This section outlines a calculation of the real SCCFC(1)(x)within the double-exchange model.
For simplicity, this calculation is performed on a Bethe lattice with z  1 and for classical
local spins with S  1. We shall work with the scaled parameters t ′ = t

√
z = W/4 and

J ′
H = JHS. As discussed in earlier publications [6, 7], the calculation is performed in three

steps.
First, C(1)(x) is expanded in a power series:

C(1)(x) =
∞∑
n=0

(−1)nx2n

(2n)!
C2n (24)

with C0 = (1/N)〈I 2〉, C2 = (1/N)〈[H, [H, I ]]I 〉, C4 = (1/N)〈[H, [H, [H, [H, I ]]]]I 〉, and
so forth. In the absence of electron hopping with t ′ = 0, the coefficients C2n may be evaluated
exactly from the commutators of the potential V with the spin current I . The real SCCF is
then given by C(1)(x) = p(1−p) cos2(J ′

Hx) (infinite T ) or C(1)(x) = q(1−q)−q sin2(J ′
Hx)

(intermediateT ), wherep is the filling fraction of electrons (p = 1 corresponds to two electrons
per site so the single band is filled) and q is the filling fraction of carriers. Hence, q equals p
for p < 1/2 (the carriers being electrons) or 1 − p for p > 1/2 (the carriers being holes). In
either case, q lies between 0 and 1/2. Notice that C(1)(x = 0) = C0 = p(1 − p) = q(1 − q)
is the same in both ranges of temperature. The oscillation of C(1)(x) with frequency 2JHS is
caused by the mutual precession of the electron and local spins at any site, during which the
total spin remains constant.

When t ′ > 0, we must evaluate all possible commutators of H = K + V with the spin
current I . Each coefficientC2n can be evaluated numerically but exactly using the commutation
relations between V , K , and I . The contributions to each coefficient are parametrized as

C2n = p(1 − p)
n−1∑
m=0

A(2m, 2n− 2m)(t ′)2m(J ′
H)

2n−2m infinite T (25)

C2n =
n−1∑
m=0

{qA(2m, 2n− 2m) + q2B(2m, 2n− 2m)}(t ′)2m(J ′
H)

2n−2m intermediate T

(26)

with n � 1. Results for A(2m, 2n− 2m) and B(2m, 2n− 2m) are tabulated in appendix B up
to 16th order.

Since C(ω) = C(1)(ω) + C(2)(ω) > 0, where C(1)(ω) is an even function of frequency
while C(2)(ω) is odd, it follows that C(1)(ω) must also be positive for all ω. Using this result
together with the constraints d2nC(1)(x)/dx2n|x=0 = (−1)nC2n, we obtain upper and lower
Tchebycheff bounds [17] to C(1)(x). Unlike the truncated Taylor expansion, which blows up
for relatively small values of J ′

Hx, the Tchebycheff bounds remain close together up to much
longer times. Results for these bounds are provided in [6] and [7].

Finally, the Tchebycheff bounds and the Taylor coefficients are used to construct analytic
forms for C(1)(x). These forms are required to satisfy the limits C(1)(x = 0) = p(1 − p) and
limJ ′

H→0 C
(1)(x) = p(1 − p). Of course, C(1)(x) must also reduce to the exact forms given

above when t = 0. For small t ′/J ′
H, the real SCCFs are well approximated by the expressions

C(1)(x) = p(1 − p)
{

exp(−t ′2x2/4)
1 + cos(2J ′

Hx)

2

+ (1 − exp(−t ′2x2/4))
1 − cos(2J ′

Hx)

2(J ′
Hx)

2

}
infinite T (27)
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C(1)(x) = q

2
exp(−t ′2x2/4)(1 − 2q + cos(2J ′

Hx)) + q(1 − exp(−t ′2x2/4))

×
{
(1 + q)

1 − cos(2J ′
Hx)

2(J ′
Hx)

2
− q sin(2J ′

Hx)

J ′
Hx

}
intermediate T . (28)

Due to the spin current flowing out of the region R containing the local magnetic disturbance,
electron hopping damps the dominant first term by exp(−t ′2x2/4). The decay of the outgoing
spin polarization as it enters a region outside R with randomized local spins produces the
second terms in equations (27) and (28), which are proportional2 to 1 − exp(−t ′2x2/4). Since
this electron polarization decays by precessing about the randomized local spins outside R,
those terms fall off with a 1/x2 or 1/x dependence. Hence, the SCCF decays with two very
different timescales: a Gaussian decay in time 1/t ′ and a power-law decay in time 1/J ′

H.
In the limit t ′ � J ′

H, the randomization of the electronic spin polarization outside R occurs
very quickly and the slow Gaussian decay of the magnetic fluctuation inside R dominates the
magnetic response. For both temperature regimes, equation (15) implies that the leading-order
term in Ds is proportional to t and is independent of JH.

Earlier approaches [3–5] to spin diffusion in itinerant models adapted a technique from
local-moment systems by assuming that C(1)(x) takes the purely Gaussian form C(1)(x) =
a exp(−bx2) [15]. Then a = C0 and b = C2/2C0 are simply obtained from the first two Taylor
coefficients and the SDC is given by Ds = (a2t2C0/2T χ)

√
2πC0/C2. Since C0 = p(1 − p)

and C2 ∝ J 2
H, this approximation implies thatDs is proportional to t2/JH for all temperatures!

For the double-exchange model, the Gaussian approximation fails because the lowest-
order t ′2x2 terms from the two exponentials in equation (27) or (28) cancel one another.
Therefore, the Gaussian approximation cannot correctly identify the time dependence of the
outgoing spin current, which dominates the process of spin diffusion for small t ′/J ′

H. On a
more physical level, the Gaussian approximation fails because spin diffusion in the double-
exchange model (and more generally, in any itinerant model) is a two-step process: first, the
electron spin polarization leaves regionR of the magnetic disturbance; then, this electronic spin
polarization decays by interacting with the randomized spins outside R. Due to the separate
contribution of each step, the SCCF cannot be approximated as a Gaussian.

Previous applications of the Tchebycheff method were restricted to local-moment systems.
For a Heisenberg ferromagnet, the SCCF involves the product of four spin operators Szi so it
is easier to deal directly with the spin correlation function G(k, ω). Several groups [18–20]
have developed sophisticated techniques for applying Tchebycheff bounds toG(k, x) in time.
Unlike for a Fermion system, however, each commutation with the Hamiltonian increases the
number of spin operators by one. So it is very cumbersome to evaluate expectation values like
〈[H, [H, . . . [H, Szi ] . . .]]Szj 〉 to high order. Consequently, study has been restricted to isotropic
and XXZ, spin-1/2 Heisenberg chains at infinite temperature.

4. Spin conductivity

This section uses the results obtained in the previous section for C(1)(x) together with the
formalism developed in section 2 to obtain the full SCCF C(x) = C(1)(x) + iC(2)(x) as well
as the Fourier transforms C(ω) and D(ω). Those results then provide the SDC Ds and the
memory time τm. The f -sum rule introduced earlier is used to evaluate the average kinetic
energy in both temperature regimes. The two temperature regimes are considered separately.

2 This paper provides a somewhat different (i.e. more mature) explanation of the 1 − exp(−t ′2x2/4) term in the
SCCF than in earlier publications [6, 7].
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4.1. Infinite temperature

It is straightforward but tedious to evaluate the Fourier transform of equation (27). The full
result for C(1)(ω) in equation (C.1) has peaks at ω = 0 and ±2J ′

H, the central peak produced
by electron hopping and the side peaks produced by the precession of the electron and local
spins. To leading order in t ′/J ′

H, C(1)(ω) can be written in the much simpler form

C(1)(ω) = p(1 − p)
√
π

t ′

{
e−ω2/t ′2 +

1

2

(
e−(ω−2J ′

H)
2/t ′2 + e−(ω+2J ′

H)
2/t ′2)} . (29)

Notice that each of the three Gaussian peaks in C(1)(ω) has an identical width proportional
to t ′ or W and that the weight of each side peak is half the weight of the central peak. By
contrast, the Gaussian approximation assumes that C(1)(ω) contains only a single Gaussian
peak centred at ω = 0. In the limit t ′ → 0, (

√
π/t ′) exp(−ω2/t ′2) → πδ(ω) and C(1)(ω) is

the superposition of three delta functions.
SinceT is much larger than any characteristic frequency ofC(1)(ω), equation (21) indicates

that C(2)(ω) must vanish. Hence, C(2)(x) = 0 and C(x) = C(1)(x) is purely real. Results for
C(x) are plotted in figure 1(a) for p = 0.35 and t ′/J ′

H = 0.05 or 0.10. As expected, the SCCF
C(x) falls off much more rapidly for the higher value of the hopping energy.

The spin conductivity can now be obtained from equation (22):

D(ω) = a2t ′2

T χz
C(ω) (30)

with the same proportionality holding between D(x) and C(x). Normalized by D(ω = 0) =
2Ds ,D(ω) is plotted in figure 2(a). As expected from equation (29),D(ω) has two side peaks
with a combined weight equal to the central peak. The imaginary part of D̄(ω + iε) is given
by equation (C.3). For small ω/t ′, this result reduces to

−i P I ≈ 2i
Dsω√
πt ′

(31)

which is a linear function of ω.
From equations (29) and (30), we obtain the SDC:

Ds = p(1 − p)
√
πa2t ′

2T χz
(32)

with corrections of order t ′(t ′/J ′
H)

2. So to lowest order, Ds is proportional to W/(zT χ) and
is independent of the Hund’s coupling. Also to leading order, the memory time defined by
equation (16) is given by τm = √

π/(2t ′), independent of the band-filling fraction. Hence,
the range of D(x) grows as the bandwidth decreases or, equivalently, as the Fermi velocity
increases.

Together with the f -sum rule of equation (23), our result forD(x) implies that the average
kinetic energy is given by

〈K〉 = −2t ′2

T
Np(1 − p) (33)

which can also be obtained directly from the double-exchange Hamiltonian. Notice that 〈K〉
vanishes for an empty or full band but reaches a minimum at half-filling with p = 1/2.
Of course, doubly occupied and empty sites are energetically allowed at half-filling when
T  JHS.

Due to the absence of correlation between the local and itinerant spins, the magnetic
susceptibility at infinite temperature is given by

T χ = 1
3 〈(s1 + S1)

2〉 = 1
2p(1 − p) + 1

3S(S + 1) (34)

with separate electronic and local contributions.
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Figure 1. The time-dependent SCCF C(x) versus xJ ′
H in the limit of (a) infinite temperature

(with C(x) purely real) and intermediate temperatures (with the (b) real and (c) imaginary parts
of C(x) = C(1)(x) + iC(2)(x) plotted separately) for q = 0.35 and t ′/J ′

H = 0.05 (solid) or 0.1
(dashed).

4.2. Intermediate temperatures

At intermediate temperatures, the Fourier transform of equation (28) is given by equation (C.2).
Just as at infinite temperature, C(1)(ω) has peaks at ω = 0 and ±2J ′

H. To leading order in
t ′/J ′

H, C(1)(ω) can be written in the more compact form

C(1)(ω) = q
√
π

t ′

{
(1 − 2q)e−ω2/t ′2 +

1

2

(
e−(ω−2J ′

H)
2/t ′2 + e−(ω+2J ′

H)
2/t ′2)} . (35)
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Figure 2. The spin conductivity D(ω) normalized by 2Ds versus ω/J ′
H in the limit of (a) infinite

and (b) intermediate temperature for the same parameters as in figure 1.

Once again, the presence of side peaks in C(1)(ω) indicates that the Gaussian approximation
fails at intermediate temperatures. From equation (21), it follows that the odd contribution to
C(ω) = C(1)(ω) + C(2)(ω) is

C(2)(ω) = q
√
π

2t ′
{
e−(ω−2J ′

H)
2/t ′2 − e−(ω+2J ′

H)
2/t ′2} (36)

which exactly cancels the ω = −2J ′
H peak in C(1)(ω).

Using the full expression forC(1)(ω) in appendix C together with equation (21), we obtain
the imaginary and odd part of the SCCF C(x) = C(1)(x) + iC(2)(x):

C(2)(x) = −q
2

exp(−t ′2x2/4) sin(2J ′
Hx)

+ q(1 − exp(−t ′2x2/4))

{
(1 + q)

sin(2J ′
Hx)

2(J ′
Hx)

2
− q cos(2J ′

Hx)

J ′
Hx

}
. (37)
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Since the inequality J ′
H  t ′ was assumed in deriving this relation, the limit J ′

H → 0 cannot
be taken without first taking t ′ → 0. Results for C(1)(x) and C(2)(x) are plotted in figures 1(b)
and (c) for the same parameters as in figure 1(a). Both the real and imaginary parts of C(x)
are damped exponentially by electron hopping.

To leading order in t ′/J ′
H, equation (22) implies that the spin conductivity can be written

as

D(ω) = q
√
πa2t ′

zT χ

{
(1 − 2q)e−ω2/t ′2 +

T

2J ′
H

(
e−(ω−2J ′

H)
2/t ′2 + e−(ω+2J ′

H)
2/t ′2)} . (38)

Unlike the case of infinite temperature, where the weight of each side peak inD(ω) is half that
of the central peak, the weight of each side peak is now suppressed by an amount proportional
to T/J ′

H because the frequency of the spin precession is far above T . Neglecting the small
side peaks and normalizing by 2Ds , D(ω) is plotted in figure 2(b).

The imaginary part of D̄(ω + iε) is provided by equation (C.4). When ω/t ′ � 1,
−i P I ≈ 2iDsω/(

√
πt ′) is identical to the expression at infinite T except that the SDC is

now given by

Ds = q(1 − 2q)

√
πa2t ′

2T χz
(39)

with corrections of order t ′(t ′/J ′
H)

2 and t ′(t ′/T )2. For a small filling fraction of carriers (small
q = p or 1 − p), this expression agrees with equation (32) for Ds at infinite temperature.
But the new result for Ds vanishes at half-filling due to the inability of the electrons to hop to
neighbouring sites without sacrificing enormous Hund’s energy. So at half-filling, each site is
singly occupied and the relaxation time τr(k) = 1/(Dsk2) diverges. Due to the same physics,
the Curie temperature of the double-exchange model also vanishes at half-filling [14].

From equation (16), the memory time at intermediate temperatures is τm = √
π/t ′,

twice as large as for infinite temperature. Hence, the range of D(x) increases as the
temperature decreases. Because it is related to the microscopic time between electronic
collisions, the memory time is not affected by the band insulator which forms at half-
filling. Ignoring the small side peaks in D(ω) ≈ 2Ds exp(−(ωτm)2/π), we find that
D(x) ≈ (Ds/τm) exp(−π(x/2τm)2). So unlikeC(x),D(x) can be approximated as a Gaussian
at intermediate temperatures with timescale τm. This suggests that simple approximations for
D(x) stand a better chance of success for itinerant models than do similar approximations for
C(x) [16].

Combined with the f -sum rule of equation (23), these results require that the average
kinetic energy at intermediate temperatures satisfies

〈K〉 = −N t
′2

T
q(1 − 2q)−N t

′2

J ′
H

q. (40)

At half-filling, the first term vanishes and −〈K〉 is suppressed by a factor of T/J ′
H compared

to its value for small q. In the limit T/J ′
H → 0, 〈K〉/W vanishes at half-filling because the

electrons are trapped at singly occupied sites. But for T/J ′
H > 0, some double occupancy is

energetically allowed and the average kinetic energy remains non-zero at half-filling.
Accounting for the correlation between the local and itinerant spins, the previous result

for the magnetic susceptibility is slightly altered:

T χ = 1
3 〈(s1 + S1)

2〉 = 1
2p(1 − p) + 1

3S(S + 1) + 2
3Sq (41)
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where the last term arises3 from (2/3)〈s1 · S1〉 = 2Sq/3. Hence, T χ is larger than at infinite
temperature.

4.3. Common features in the two temperature regimes

A few conclusions can be drawn from the common features of spin diffusion in the two
temperature regimes. Using the results for D̄(ω + iε), we find that χ2(k, ω) takes a Lorentzian
form (expected in the hydrodynamic limit) provided that ω � t ′ and k2Ds � t ′. Since the
inequality ka � 1 was already assumed in order to allow neglect of the momentum dependence
of D̄(z), the second inequality above is always satisfied.

When ka � 1 and xt ′  1, G(k, x) falls off exponentially with

G(k, x) ≈ T χe−Dsk2x (42)

which obeys the required limit limk→0G(k, x) = T χ . Notice that the exponential time decay
of the spin correlation function can also be written as exp(−x/τr(k)), which is the expected
hydrodynamic result. Just as for the Heisenberg model [21–23], however, deviations from this
behaviour might be expected as the dimension or coordination number are reduced.

This raises the question of whether our results would be qualitatively changed by using
a hypercubic lattice in d = z/2 dimensions rather than a Bethe lattice. It has long been
recognized [24] that the Bethe lattice has pathologies which become especially irksome when
evaluating order parameters and critical parameters [25]. But whereas the bandwidthW = 2zt
of a hypercubic lattice diverges as z → ∞ and t = t ′/√z → 0, the bandwidthW = 4

√
zt of

a Bethe lattice remains finite in this limit. Hence, the physics of the Bethe lattice in infinite
dimensions may better reflect the physics of a three-dimensional system with well-defined
band edges [14, 26].

The pathologies of the Bethe lattice originate from its property that the surface-to-volume
ratio for large z is proportional to 1 − 1/z [24], which compromises the thermodynamic
limit. However, in evaluating the coefficients A(2m, 2n − 2m) and B(2m, 2n − 2m) on the
Bethe lattice, surface effects are irrelevant. To lowest order, the contribution of closed loops
on a hypercubic lattice would change the expansion of C(1)(x) by a term proportional to
(xJ ′

H)
6(t ′/J ′

H)
4. For t ′/J ′

H � 1, terms of this order are quite small. In fact, the analytic
expressions for C(1)(x) already neglect selected terms of this order, which were found [6] not
to appreciably change the results forDs . So it seems quite reasonable that spin relaxations on
Bethe and hypercubic lattices behave in a similar fashion.

Indeed, very recent work [27] using dynamical mean-field theory (which becomes exact
in infinite dimension) indicates that the spin conductivity D(ω) depends solely on the value
of the density of states at the Fermi level ρ(0) rather than on the lattice topology. The small
difference between the values of ρ(0) in the Bethe and hypercubic lattices leads to small and
insignificant differences between the results for D(ω) in those two systems.

3 The expectation value of Vi = −2JHsi ·Si at intermediate temperatures is evaluated from the quantum-mechanical
result that si · Si = S/2 (2S + 2 states) or −(S + 1)/2 (2S states). So for large S,

〈si · Si〉 = eβµ

1 + eβ(µ+J ′
H) + e2βµ

S tanh(βJ ′
H) = Sq

where the last equality uses

p = 1

2

eβ(µ+J ′
H) + 2e2βµ

1 + eβ(µ+J ′
H) + e2βµ

to evaluate exp(βµ) in the limit βJ ′
H → ∞ for p < 1/2 (µ < 0) or p > 1/2 (µ > 0).
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Figure 3. The SDC versus doping for infinite (dashed) and intermediate (solid) temperatures,
assuming that T χ is the same in the two temperature regimes.

5. Discussion and conclusions

This paper has presented a general technique for studying spin diffusion in itinerant systems.
Spin relaxation in an itinerant system occurs in two steps: first, the electronic spin current
leaves region R of the magnetic disturbance; second, this outgoing electronic polarization
relaxes by coupling with the randomized spins outside R. Due to the complexity of this two-
step process, techniques borrowed from local-moment systems are not adequate for studying
spin relaxation in itinerant systems.

The physics of the double-exchange model at temperatures far above and far below the
Hund’s coupling JHS is quite different: whereas the electron and local spins are uncorrelated
for T  JHS, they are highly correlated for T � JHS. Viewed in terms of D(ω), the change
in spin dynamics from infinite to intermediate temperatures is surprisingly simple with the spin
precession peaks at ω = ±2JHS suppressed by T/(JHS) at intermediate temperatures. For
both temperature regimes, the integral overD(ω) is proportional to the average kinetic energy
and is inversely proportional to the magnetic susceptibility (more about this in a moment).

In infinite dimensions, it can be shown [27] that the spin conductivityD(ω) is proportional
to the optical conductivity σ(ω) (see appendix A). Although derived under very general
conditions, the f -sum rule forD(ω) reduces in infinite dimensions to the optical sum rule for
σ(ω). The peak inD(ω) at 2JHS is then associated with the peak predicted by dynamical mean-
field theory [28] in σ(ω) at the same frequency. Within the optical conductivity, the peak at
2JHS is produced by electronic transitions between spin states that are parallel and antiparallel
to the local spin. Optical measurements [29] on the manganites may have detected this peak.

Results for the SDC are summarized in figure 3, which assumes that T χ is independent of
temperature. In both temperature regimes, the leading-order term in Ds is proportional to the
electron bandwidthW and is independent of JH. But the doping dependences of Ds are quite
different in the two regimes. WhileDs has a maximum at half-filling for infinite temperature, it
vanishes at half-filling for intermediate temperatures due to the prohibition of doubly occupied
and empty sites. Close to p = 1/2 at intermediate temperatures,Ds is predicted to be a linear
function of doping.

Neutron-scattering measurements [11, 12] on manganites like LayCa1−yMnO3 with hole
doping y ≈ 0.3 (andp = (1−y)/2 ≈ 0.35) are, in at least two ways, difficult to reconcile with
the predictions of the double-exchange model for spin relaxation. First, the SDC exhibits little
temperature dependence as T approaches TC [12]. Second, spin diffusion seems to persist even
below TC [11, 12], where the quasi-elastic peak in χ2(k, ω) coexists with spin-wave peaks.
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Can such behaviour arise from an exact treatment of the double-exchange model in three
dimensions? Unlike our other results, the f -sum rule of equation (23) remains valid even
close to TC and in any dimension. As T → TC, χ → ∞ and the integral over D(ω) must
vanish. Since D(ω) � 0 for all ω, this implies that D(ω) → 0 for every ω and, in particular,
that Ds = D(ω = 0)/2 → 0 as T → TC. So away from the critical regime where the
magnetic correlation length ξ becomes large and our parametrization of the response function
fails, the double-exchange model predicts thatDs should exhibit dramatic temperature depen-
dence. This prediction cannot be reconciled with the measurements described above. But aside
from narrowing the electron bandwidth, it is unknown how the presence of lattice and magnetic
polarons may alter the spin dynamics of the double-exchange model. It is possible that the inho-
mogeneities produced by polarons [13] open other avenues of magnetic relaxation close to TC.

Despite the inadequacy of the double-exchange model, it is interesting to quantitatively
compare our theoretical predictions with measurements [11, 12] of Ds close to TC. For
manganites with z = 6 neighbours, a local spin of S = 3/2, and a bandwidth of W ≈ 2 eV,
we expect that t ′ = W/4 ≈ 0.5 eV, J ′

H = JH
√
S(S + 1) ≈ 3.9 eV, and t ′/J ′

H ≈ 0.13. For an
electron filling of p = 1/3 corresponding to a doping of y = 1/3, the double-exchange model
predicts that Ds ≈ 180 meV Å2 (infinite T ) or 72 meV Å2 (intermediate T ), which corrects
for the slightly larger value of T χ at intermediate temperatures. Hence, the predicted value of
Ds for intermediate temperatures is only about 5 times larger than the valueDs ≈ 15 meV Å2

measured near TC in the La1−yCayMnO3 compound with y = 0.3 [11, 12]. Moreover, recent
measurements by Dai et al [30] indicate that the doping dependence ofDs obeys the prediction
Ds ∝ y of the double-exchange model for small y or for p close to 1/2.

The relatively good agreement between the predictions of the double-exchange model at
intermediate temperatures and the measurements close to TC suggests that the double-exchange
model may be a good starting point for describing spin diffusion in the manganites. Rigorous
results like the f -sum rule derived in this paper may provide the framework for understanding
the physics of highly complex systems like the manganites, including the non-trivial effects of
polarons.
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Appendix A. f -sum rule

On the basis of the definitions of χ2(k, ω) in equation (4) and J z(k) in equation (18), we find
that ∫

dω

π
ωχ2(k, ω) = 1

N

∑
δ

k · aδ〈[J zδ (k), Sztot,−k]〉. (A.1)

But the commutator of the spin current with the total spin is given by

[J zδ (k), S
z
tot,−k] = t

4
k · aδ

∑
i

{
c

†
Ri ,α
cRi+aδ ,α + c†

Ri ,α
cRi−aδ ,α

}
(A.2)

and so
1

χ

∫
dω

π
ωχ2(k, ω) = k2

∫
dω

2π
D(ω) = − (ka)

2

2Nzχ
〈K〉 = k2Ds

τm
(A.3)

where the first equality follows from equation (11). This f -sum rule relates the integral over
D(ω) to the expectation value of the kinetic energy for any Hamiltonian with a potential V
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that commutes with the total spin [27]. It is valid for all temperatures and for all values of S
and z, in any dimension.

In infinite dimensions, it may be shown [27] that the spin conductivity D(ω) is simply
related to the particle conductivity σ(ω) by

D(ω) = 1

2χe2
σ(ω). (A.4)

Hence, the f -sum rule derived above forD(ω) in any dimension is equivalent to the f -sum rule
(also known as the optical sum rule) for the particle conductivity [31] in infinite dimensions.

Appendix B. Taylor coefficients

Here we summarize our results for the Taylor coefficients C2n, which are parametrized by
equations (25) and (26). Up to 16th order, A(2m, 2n− 2m) and B(2m, 2n− 2m) are given by

A(2m2n− 2m) m 0 1 2 3 4 5 6 7
n

1 2
2 8 4
3 32 52 20
4 128 416 462 140
5 512 2 752 5 820 4 788 1 176
6 2 048 16 384 55 792 85 140 54 252 11 088
7 8 192 91 136 454 272 1 098 240 1 271 270 651 222 113 256
8 32 768 483 328 3312 640 11 589 760 20 965 438 19 173 440 8 138 702 1226 940

B(2m2n− 2m) m 1 2 3 4 5 6 7
n

2 6
3 40 50
4 224 658 448
5 1 152 6 000 9 480 4368
6 5 632 45 408 125 312 132 858 45 540
7 26 624 306 176 1 292 928 2 367 508 1 852 994 500 214
8 122 880 1907 200 11 386 880 31 611 554 42 323 970 25 903 306 5725 720

Appendix C. Expressions for C(1)(ω) and P I

Performing the Fourier transforms of equations (27) and (28), we find that

C(1)(ω) = p(1 − p)
{√
π

t ′

{
e−w2

+
1

2

(
e−(w−u)2 + e−(w+u)2

)}

+
πt ′

2J ′
H

2

{
(u− |w|)>(u2 − w2) + w?(w) +

1√
π

e−w2 − 1

2
(w + u)?(w + u)

− 1

2
(w − u)?(w − u)− 1

2
√
π

(
e−(w+u)2 + e−(w−u)2)}}

infinite T (C.1)

C(1)(ω) = q
√
π

t ′

{
(1 − 2q)e−w2

+
1

2

(
e−(w−u)2 + e−(w+u)2

)}

+
πt ′

2J ′
H

2 q(1 + q)

{
(u− |w|)>(u2 − w2) + w?(w) +

1√
π

e−w2

− 1

2
(w + u)?(w + u)− 1

2
(w − u)?(w − u)− 1

2
√
π

(
e−(w+u)2 − e−(w−u)2)}

− π

2J ′
H

q2
{
2>(u2 − w2)−?(w + u) +?(w − u)} intermediate T (C.2)
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where w = ω/t ′, u = 2J ′
H/t

′,>(w) is the step function, and?(w) is the probability function
(?(−w) = −?(w) and ?(w)→ 1 as w → ∞).

The imaginary part of D̄(ω + iε) is given by

−i P I = i
a2t ′

T χz
p(1 − p)

{
F(w) +

1

2

(
F(w − u) + F(w + u)

)}
infinite T (C.3)

−i P I = i
a2t ′

T χz
q

{
(1 − 2q)F (w) +

T

2J ′
H

(
F(w − u) + F(w + u)

)}
intermediate T

(C.4)

F(w) = e−w2
∫ w

0
du e−u2 = π

2i
e−w2

?(iw). (C.5)

It can be shown that F(w)→ w for w � 1 and F(w)→ 1/(2w) for w  1.
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